当前位置:首页 > 实用文 > 说课稿

积的变化规律数学说课稿优秀

时间:2024-06-08 08:23:34
积的变化规律数学说课稿优秀

积的变化规律数学说课稿优秀

作为一无名无私奉献的教育工作者,时常需要编写说课稿,说课稿是进行说课准备的文稿,有着至关重要的作用。我们应该怎么写说课稿呢?以下是小编收集整理的积的变化规律数学说课稿优秀,欢迎大家借鉴与参考,希望对大家有所帮助。

积的变化规律数学说课稿优秀1

积的变化规律是学生学习乘法以来遇到的第一个规律性的内容。从内容上来说,它更加抽象化,更接近纯数学的学习。如何走好这一步,对学生下一阶段的数学学习,思维能力的发展,具有重要的作用。整堂课的设计始终以学生自主探究为主体,注重展开知识的发生发展过程,重视展开学生的思维过程,使学生真正成为学习的主人,而教师是数学学习的组织者、引导者和合作者,帮助学生在实践探索的过程中体验数学,培养学生数学交流的能力和合作意识,初步获得探索和发现数学规律的基本方法和经验。

一、情景“生活化”,让学生学习有用的数学

《数学课程标准》指出“数学内容应当是现实的”,应当“学有用的数学”。教师不仅考虑到了与生活实际相联系,激发学生的学习欲望,更考虑到与本堂课的知识点要相结合,有利于学生进行探究的素材。本节课联系全社会非常关注的西藏发展和青藏铁路建设为线索,教师充分提供表象将学生带到真实的生活中,让他们在一种宽松的学习氛围下,遵循从具体到抽象的认知规律,兴致勃勃地探索数学知识的奥秘——积的变化规律,并一次次地创设情景,让学生运用规律作出分析、判断和计算,解决了西藏铁路运输和校园改造等生活实际问题,培养了学生的数学意识。

二、关注“个性化”,让学生自主探究和创造

学生参与探索活动,经历发现规律的过程是新课标教材编排的意图,面对新的数学问题,教师鼓励学生在主动观察、猜测、讨论、交流和验证等数学活动中,感受到数学问题的探究性和挑战性,通过看、想、说、动手做、练的过程,顺利的完成本课的教学任务,并能充分体现了数学学习的“亲历性”,努力使学生在获得对数学理解的同时,在思维能力、情感态度等多方面也得到一定的进步和发展。特别是在初步感知规律后,引导学生猜想:是不是所有的乘法算式都具有这样相同的特点呢,再自己想办法加以验证。学生们个个像数学家一样,进行大胆的猜想,并自主地收集例证材料进行验证,发现真正的数学规律。这样,学生在研究发现数学规律的同时,受到了一次科学研究方法的启蒙,是发展学生的创新意识和创造性学习的.有效途径。

三、施教之法,贵在启导

师是教学活动的设计者、组织者,主导着课堂教学活动的全过程。充分发挥教师的“主导”作用、是促进学生“学”的关键。为此,教必须以”导”为载体,以“学”为根本。开课时,引导学生从现象上感知:一个因数不变,另一个因数变了,积也随着发生变化;通过提问:从上往下观察和从下往上观察,你发现了什么?

5╳2=10(元)①

5╳4=20(元)②

5╳12=60(元)③

5╳24=120(元)④

教师充分提供时间与空间,与学生合作,对因数和积的变化情况进行深入的研究,分别总结出这组算式中,一个因数不变,另一个因数乘或除以几时,积的变化特点;在验证是不是所有的乘法算式都具有这样相同的特点的过程中,学生第一次接触这样的研究方法,研究比较困难。教师应作为指导者参与其中,规范研究过程,增强验证过程的实效性。这样,从整体到部分,由部分又回到整体,从上向下,从下向上,由表及里地引导学生观察,将静态的、结论性的数学转化为动态的、探索性的数学活动,使学生有充分的机会从事数学活动,帮助学生在实践探索的过程中体验数学,并从中获得一定的数学思想方法和数学活动的经验,培养学生从正反两个方面观察事物的辨证思想。

作为教师,我们在课前总是努力做好各种设想、准备,然而课堂上却又经常会碰到出乎意料的问题,如所面对的学生在认知水平和学习能力存在显著差异等,明显老师在这方面应变机智不足,依然顺着教案往下走。这时需要教师适时随机应变,根据学生学习的情况,灵活地调整原有设计,生成新的超出原计划的教学流程,使课堂处在动态和不断生成的过程中,以满足学生自主学习的要求,教师只有把自己的教育能力上升到教育智慧的高度,才能胜任动态生成式教学。

积的变化规律数学说课稿优秀2

第一轮“达标立标”课,已圆满的结束,经过三年级数学组老师的共同努力,从选定内容,到一次次备课,修改教案,再到重新上课,在于主任的引领和郭老师的帮助下,我们顺利的完成了《积的变化规律》的研讨。在一次次的磨课中不断有新的灵感,而课堂也日趋完善,在整个磨课过程中自己成长并收获着。

第一次上课是由杜老师执教的,通过呈现课本情景图,读信息,由谈话导入,通过读信息提问题,抛出需要学生解决的问题,从而引出了课题,学生通过老师提供的自学指导进行自学,师生交流规律,然后就是规律的应用。整节课符合先学后教的原则,等杜老师上完这节课之后,我们又静下心来反思,课是上完了,但是是否所有的学生都感受到积的变化规律了?是否每个学生都按照先学后教进行学习了?在于主任的及时点拨下,我们没有灵活的运用先学后教,从而使整节课的教学流程及环节显得有些牵强。本节课是一节找规律的.课,学生应该经历从“猜测→验证→得出正确结论”,通过这些环节,让学生充分感知规律的来源和学习数学的严谨性。在教研组老师们的质疑与提醒下,我们又对课进行了重新的修改,让学生真正体验“猜测→验证→得出正确结论”。同时把结论从原来的“一个因数不变,另一个因数扩大到原来的几倍,积就扩大到原来的几倍”,修改为便于学生理解的“一个因数乘几,积就乘几”。同时也对本节课的知识有一个适当的扩展”一个因数不变,另一个因数除以几,积也除以几”。

对课进行了调整,第二次上课是有毕老师进行执教。先由一组口算导入,交流解题的好方法,从而引出课题,以以温馨提示出示自学指导,整节课经历了学生大胆的猜测,验证,最后得出结论,整节课充分体现了“找规律”课型的特点。在整个授课过程中,毕老师思路清晰,环环相扣。如果能够认真倾听孩子的问题,对孩子的问题进行跟踪提问,这样的课堂还会更紧揍,更有激情一些。

反思自己的课堂教学

我是三年级组最后一轮上课的老师,在录播教室上课给了充分学习的机会,不禁对自己的一言一行有充分的了解,而且能更好的学习到优秀老师的亮点。讲完课,没有感觉到轻松,反而多了几分沉重。通过这节课,认真总结了自己在教学上的一些不足之处。

一、要认真备好课,每个细节落实到位

讲课之前听了同组三个老师的授课,以为自己对整个教学思路和教学环节都有了一定的了解,所以在备课方面没有尽全力去认真对待,导致整节课过度环节过渡语不够完善,显得课堂不够紧凑。如,做完口算后,问“有什么好方法做的这么快”应该说设计具有开放性,起到了激活学生思维的作用。可上完课,细细一琢磨,感觉很不好,我的“预设”没有达到目的,对课堂提问的“度”也没有把握好,课题出现的有点突然。所以一节课不单单是备好教案,更要备好孩子,考虑好孩子会出现的问题,自己能够及时的应付。

二、规范自己的课堂语言

反思自己的课堂教学,自己激励和表扬孩子的语言用的较少,而孩子则更多的需要老师的鼓励和评价,而更多时候用的则是命令孩子的语言。另外,课堂上应该静下心来认真倾听孩子的发言,而自己的课堂则是老师说的多,说多了孩子就会用依赖性。课堂真的应该放手多让孩子说,但是老师的总结要起到一个画龙点睛的作用。

三、认真对待每一节家常课,锻炼自己

一节课40分钟,而学生知识的取得正是靠这一节节的家常课。针对这次讲课,自己一定要认真反思克服不足,认真准备好每一节课,要运用好课堂40分钟。

同一教学内容不同教学风格,使我又一次深刻体验到,磨课的重要性,如果每节课能从研究备课和上课开始,一节课一节课地加以研究和积累,就能增强自己可持续教学的能力,促使自己专业化成长。在今后的教学中,要严格要求自己,尽自己最大努力做一个负责任的好老师。

积的变化规律数学说课稿优秀3

教学内容:

北师大版小学数学四年级下册第二单元“三角形边的关系”。

教材分析:

《三角形边的关系》是四年级下册第二单元认识图形中的第四课内容,是小学“空间与图形”领域中新增添的内容,是在线段、角、顶点、三角形分类等三角形知识学习的基础上的延伸。为今后学习三角形面积和应用提供了重要条件。

学生分析:

从接触三角形以来,都是针对已成立的三角形进行学习和研究的,从未涉及到:“两边之和小于第三边的三条线段不能围成三角形”这一陌生领域。在生活实际中缺乏鲜活实例和经验,固而学生在学习该段内容时,会有与生活实践相割裂的感觉。学生对较抽象的问题无法明白其含义。所以这段知识的理解对学生来说有相当的难度,学生不够自信,没有勇气参与,学习的兴趣和主动性不足,无法完全独立的进行探究活动。需要老师以学生体验过程为主,以感知探索的方法为重,给予指导。

教学目标:

1、知识与技能:使学生发现并理解三角形任意两边之和大于第三边,并能运用规律解决生活中的实际问题。培养归纳、概括能力和推理能力。

2、过程与方法:让学生通过动手实践,分析数据,体验探索和发现三角形边的关系的过程,培养学生发现问题的意识及提出问题的能力,积累探索问题的方法和经验。

3、情感态度价值观:提高学生自主探索和合作交流的能力。激发对数学的探究兴趣,引导学生树立自己探索真理的勇气和信心,享受成功的喜悦。

教学准备:

多媒体课件、实物投影、小棒若干。

教学过程:

一、导入

1、师:同学们,最近几天咱们一直在围绕哪种图形进行学习?

(生:三角形)。

师:什么是三角形?

(生:由三条线段首尾相接围成的平面图行就是三角形。)

师:围成三角形的三条线段是三角形的什么?

(生:边。)

2、解释课题

今天咱们就来共同研究三角形的三条边之间有什么奥秘。

二、探究活动

1、用4组不同长度的小棒围三角形,初步感受能否摆成三角形与小棒的长度有关。

①师:刚才咱们说了“由三条线段首尾相接围成的平面图行就是三角形”,那么如果用小棒代替线段来围三角形,得用几根小棒?

师:是不是只要给你3根小棒你就一定能围成一个三角形?

师:怎么验证咱们说得对不对呢?

(生:实际动手摆一摆、围一围。)

师:那好,课前咱们都准备了几组长度不同的小棒,接下来咱们就来摆一摆。在动手之前咱们先来一起看一看“活动要求”。

②课件出示“活动要求”。

学生自读活动要求,师:清楚活动要求了吗?开始吧!。

③学生动手摆一摆并完成活动记录表。

④汇报活动结果。

师:通过刚才的活动,是不是只要是3根小棒就一定能摆成三角形?(生:不一定。)

师:在刚才的4组小棒中,那几组能摆成三角形?哪几组摆不成三角形?你觉得能否摆成三角形跟小棒的什么有关?(生:小棒的长度。)

2、进一步探究怎样的3根小棒能摆成三角形。

①课件分别演示4组小棒摆三角形的过程。

②两根短小棒长度之后小于长小棒时摆不成三角形。

出示第3组小棒(2,3,6)。

师:这3根小棒能摆成三角形吗?最后会出现什么情况?(2厘米和3厘米的两个短小棒与6厘米的小棒重合并且没能首尾相接。)

师:为什么这3根小棒摆不成三角形?(生:小棒太短了。)

师:为什么太短了?(生:2厘米加3厘米都不到6厘米,有缺口,接不上。)

师板书:2+3<6

师:这3根小棒能摆成三角形吗?(1,2,5 2,2,8)

师:咱们来观察一下这几组小棒之间的关系,什么情况下的.3根小棒摆不成三角形?

归纳:两根短小棒长度之后小于长小棒时摆不成三角形。

③两根短小棒长度之后等于长小棒时摆不成三角形。

师:既然你们觉得小棒太短了围不成三角形,那我现在把2厘米的小棒延长1厘米,这时就成了第4组小棒(3,3,6)的长度,你们刚才摆成三角形了吗?

课件演示。

师:出现了什么情况?(3厘米和3厘米的两个短小棒与6厘米的小棒刚好重合。)

板书:3+3=6

师:那么3,5,8这3根小棒能摆成吗?5,6,11呢?

师:那么怎样的3根小棒也摆不成三角形呢?

归纳:两根短小棒长度之后等于长小棒时也摆不成三角形。

④小结

师:咱们能不能用一句话概括摆不成三角形的两种情况?

生:两根短小棒长度之后小于或等于长小棒时摆不成三角形。

⑤探究怎样的3根小棒能摆成三角形。

师:现在咱们知道了两根短小棒长度之后小于或等于长小棒时摆不成三角形,那大家能不能大胆猜测一下,怎样的3根小棒能摆成三角形?

生:两根短小棒长度之后大于长小棒时能摆成三角形。

师:是这样吗?咱们再来看看能摆成三角形的那两组小棒的长度,算一算是否验证了咱们的猜想。

学生算一算验证猜测。

师:那么怎样的3根小棒能摆成三角形?

归纳:两根短小棒长度之后大于长小棒时能摆成三角形。

3、进一步探究三角形边之间的关系

①师:这是咱们摆成三角形的那2组小棒。当我们用小棒摆成三角形后,小棒相当于三角形的什么?(生:三角形的边。)

②师:请你算一算,比一比。

学生同桌两人交流。

个别学生汇报计算结果。

③师:那么三角形的三条边之间有什么关系?

学生思考。

④归纳总结

三角形任意两边之和大于第三边。(板书)

师:这就是三角形边之间的关系。刚才咱们是从这两个三角形发现的这个结论。现在咱们利用课前画的任意三角形来算一算,看是不是任意一个三角形都具备这样的规律。

(学生计算验证)

三、随堂练习

师:通过刚才的学习我们知道了三角形任意两边之和大于第三边的规律。但学习的最终目的是学以致用。下面陈老师准备了一些习题,敢不敢试一试?

1、淘气从家到学校有两条路可以走。从下图中你能看出那条路近吗?用今天所学的知识说说你的理由。

《三角形边的关系》教学设计

2、完成“练一练”1-3

四、布置作业

练一练。4

五、全课小结

积的变化规律数学说课稿优秀4

在乘法运算中探索积的变化规律是整数四则运算中内容结构的一个重要方面,这堂课以两组乘法算式为载体,引导学生探索当一个因数不变时,另一个因数与积的变化情况,从中归纳出积的变化规律。通过这个过程的探索,不但让学生理解两数相乘时,积的变化随其中一个因数(或两个因数)的变化而变化,同时体会事物间是密切相关的,受到辩证思想的启蒙教育。

在第一次的试教中,由于选择的一组题目较为容易,很多学生在解决问题时,不需要利用积的变化规律就能很容易口算出答案,使这一规律不能很好的应用,也没有应用的价值,规律的方便性就体现不出来了,因此在第二次试教时,我将这类型的题目加大了难度,使学生不能用口算的方法来计算出答案,只能运用这个规律来计算,但事与愿违,由于题目的'难度偏大,一部分学生索性就用列竖式的方法来解决了。因此,在对题目的把握上还需下番心思。个别学生能用这个规律来算,却说不清个中的缘由,说明对这个规律还没有真正理解,掌握好,还不能信手拈来。个别同学竖的能看出来,写成横的就不太认识了。

在让学生自主探索一个因数不变,积随着另一个因数的变化而变化的规律时,我让学生根据预先设置好的题目来探究规律,这样显得有些程序化。如果能让学生现场根据自己想的,一个因数乘任何数(扩大任意倍数),看看积会怎么变化,这样会更有说服力,学生也更容易接受。

对于这类学生刚刚刚尝试探索规律的问题,应广泛地进行小组讨论,发挥集体的智慧,群策群力,让学生自己经历研究问题的一般方法:研究具体问题——归纳发现规律——解释说明规律——举例验证规律,让学生真正成为课堂的主人,给学生留出充足的探索空间,让学生自主地进行探索与交流。老师只是适时补充或纠正,把思考的权利还给学生。

《积的变化规律数学说课稿优秀.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式